# WNE Linear Algebra Resit Exam <br> Series A 

2 March 2019

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.


## Problem 1.

Let $V=\operatorname{lin}((1,1,2,-1),(-2,1,5,8),(4,1,-1,-10))$ be a subspace of $\mathbb{R}^{4}$.
a) find a basis $\mathcal{A}$ of $V$ and the dimension of $V$,
b) find all $t \in \mathbb{R}$ such that $(2,1,1, t) \in V$.

## Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations
a) which of the following sequences of vectors are bases of $V$ ?
i) $((1,2,-3,11))$,
ii) $((1,2,-3,11),(-2,-4,-1,6))$,
iii) $((-2,1,0,0),(1,0,4,1))$,
iv) $((3,-1,4,1),(1,0,4,1))$,
v) $((-2,1,0,0),(4,-2,0,0))$.

Give reasons for your answers.
b) find coordinates of $w=(3,-2,-4,-1)$ relative to one of the basis from the part a).

## Problem 3.

Let

$$
A=\left[\begin{array}{ll}
-2 & 3 \\
-6 & 7
\end{array}\right]
$$

a) does there exists matrix $C \in M(2 \times 2 ; \mathbb{R})$ such that

$$
C^{-1} A C=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

for some $a, b \in \mathbb{R}$ such that $a<b$ ? If it does, give an example of such matrix $C$.
b) compute $A^{200}$.

## Problem 4.

Let $\mathcal{A}=((1,2),(1,3)), \mathcal{B}=((0,1),(1,2))$ be ordered bases of $\mathbb{R}^{2}$. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformations given by the matrix

$$
M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{rr}
-1 & 1 \\
2 & 1
\end{array}\right] .
$$

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformations given by the matrix

$$
M(\psi)_{\mathcal{A}}^{s t}=\left[\begin{array}{rr}
0 & -1 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

a) find the formula of $\varphi$,
b) find the matrix $M(\psi \circ \varphi)_{\mathcal{B}}^{s t}$.

## Problem 5.

Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
3 & 5 & 2 \\
-4 & t & 5
\end{array}\right]
$$

a) for which $t \in \mathbb{R}$ is matrix $A^{4} A^{\top}$ invertible?
b) for which $t \in \mathbb{R}$ is the entry in the first row and the second column of $A^{-1}$ equal to 10 ?

## Problem 6.

Let $V=\operatorname{lin}((1,2,-1),(3,8,-5),(2,1,1))$ be a subspace of $\mathbb{R}^{3}$.
a) find an orthonormal basis of $V^{\perp}$,
b) compute the orthogonal projection of $w=(1,0,0)$ onto $V$.

## Problem 7.

Let $M$ be the affine plane in $\mathbb{R}^{3}$ passing through the point $Q=(1,1,7)$ which is parallel to the subspace

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 2 x_{1}-x_{3}=0\right\} .
$$

a) find a parametrization of the line $L$ passing through point $P=(1,0,2)$ perpendicular to $M$,
b) find an equation describing $M$ and compute the affine orthogonal projection of the point $P$ onto $M$.

## Problem 8.

Consider the following linear programming problem $-3 x_{2}-2 x_{4} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{aligned}
x_{1}+ & + & x_{4} & =1 \\
& x_{2}+ & 2 x_{4} & =2 \\
& & x_{3} & x_{4}
\end{aligned} \quad \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 4\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{1,2,3\}, \mathcal{B}_{2}=\{1,3,4\}$ is basic feasible? Write the corresponding feasible solution.
b) solve the linear programming problem using simplex method.

